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One-Particle Excitation Spectrum 
in a Bisoliton Model of Superconductivity 
BY 
V. N. ERMAKOV and S. P. KRUCHININ 

A bisoliton model of high-temperature superconductivity is formulated in terms of one-particle 
states. The transition to a superconducting state is shown to be accompanied by the energy spec- 
trum rearrangement. The dielectric gap typical for BCS theory is appeared. I ts  dependence on 
concentration of carriers is of nonmonotonous character. The conditions for realization of it bisoli- 
ton mechanism of superconductivity are considered. 

TepMmHax OnHoqacTwnmx COCTOIIHH~.  ITo~aaa~o ,  YTO nepexon B csepxnpoBonaUee 
cocTomue conpoBomnaeTcR nepecTpohoB 3 1 1 e p r e ~ ~ ~ e c ~ o r o  cnempa. I'IomwaeTcR 
~ u a n e ~ ~ p ~ u e c ~ a ~ ~  wem, xapamepHaa HJIII Teopm BHLU. Ee ~ ~ B H C H M O C T ~  OT KoHueH- 

C$OpMyJIHpOBaHa 6l%COJIIlTOHHaH MOAeJib BbICOKOTeMnepaTypHO3 CBepXIlpOBO~HMOCTl% B 

TPaUHH HOCHTeJIefi HOCElT HeMOHOTOHHbIfi XapaKTep. PaCcMaTpElBalOTCH YCJIOBIlH peanH- 
3aIJHIl 61lconll~O~~oro MeXaHkI3Ma CBepXnpOBOjlHMOCTH. 

1. Introduction 

The properties of optical and tunneling phenomena in superconducting systems are 
generated, primarily, by the peculiarities inherent to the one-particle energy spec- 
trum of carriers. The transition to  a superconducting state is accompanied by the 
appearance of a dielectric gap and changes in the dispersion law of quasi-particle 
states. For low-temperature superconductors these peculiarities are described mainly 
by the BCS theory [ 11. However, for high-temperature superconductors, the problem 
of a correct description of the one-particle excitation spectrum is not yet solved since 
there is no clear concept of the superconductivity mechanism. 

I n  our paper we consider the peculiarities of changes in a one-particle spectrum 
under the transition into a superconducting state in a bisoliton model of high-tem- 
perature superconductivity. According to this theory [ 2 ,  31 Fermi particles in a quasi- 
one-dimensional chain in states with energy close to the Fermi level with opposite 
wave numbers and spins are paired due to  the deformation energy producing a bi- 
soliton with zero spin and doubled charge. Bisolitons distributed periodically can 
move along the chain with the same velocity forming a stable bisoliton condensate [a]. 

Below we formulate a bisoliton model of superconductivity in terms of one-particle 
states. I n  this case we are interested in the temperature range close to zero. 

2. The Deformation Field 

The transition to a superconducting state with arising bisoliton condensate is accom- 
panied by the generation of a local deformation field. In  a bisoliton model this field 
is described by the potential [ 2 ]  

W) = -4Js@2(5), (2.1) 

*) Metrologicheskaya ul. 196, SU-252 130 Kiev, USSR. 
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where 5 = (x - vt)/a,  a is the period of the chain, v the velocity of bisoliton motion. 
The constants J and g are determined, respectively, by 

t22 

2ma2 ' 

0 2  

J = -  

V 
s =-. 

= 2 J x ( 1  - 8 2 )  ; VO 

Here g is the deformation interaction parameter, x the elasticity coefficient, V, the 
sound velocity in the chain, rn is the Fermi-particle mass. 

The function @(l) is periodic with period a L  (L-1 has the meaning of a bisoliton 
concentration) and is normalized by the condition 

L 

0 
I ~ ( t )  at  = 1 .  

It can be represented by the Jacobi elliptic functions dn (u, q )  

where the modulus q is determined by 

9L = 2 E ( d  K(d - (2.4) 
K(q) and E ( q )  are total elliptic integrals of first and second kinds, respec- 

tively, [4]. 
Thus, according to (2.1), the deformation field represents a system of potential 

wells distributed periodically, with period aL. Each potential well involves two quasi- 
particles with opposite spins. This field will rearrange the spectrum of excitations of 
one-particle states. 

3. One-Particle States 
The wave function Y(E) of one-particle stationary states in the coordinate system 
moving with the bisoliton condensate, is a solution to the Schrodinger equation with 
potential V ( 5 )  determined by (2.1), 

Here W is the chain deformation energy of a single particle, 
L 

W = 2Jg I @*(5) a t ,  
0 

EF = Jk;.a2 is the Fermi energy. 
To determine the one-particle spectrum we represent Y(6) as the expansion in func- 

tions qJr(E), 

(3.2) 

orthonormalized in the chain of length la 

W) = 44 W(E) . (3.3) 
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The function Y(5) is normalized in the space I and, respectively, 

c lu(k)12 = 1 . 
k 

Using (3.3) we represent (3.1) as 

( - g ( k )  + + EF - w) u(k)  + v(k - ki) u(ki) = 0 
k, 

in which 
g(k )  = J a 2 k 2 ,  

(3.4) 

Further simplification of (3.4) can be realized using the properties of the potential 
V(5)  

where 
L / 2  

V(5)  exp {-ikaE} d5 . 
L (3.7) 

V(k  - k,) is nonzero, if 
L ( k  - k,) a = 2nv; v = 0, +1, + 2 .  (3.8) 

The density of quasi-particles being in the states satisfying (3.8) should follow L-1. 
This requirement is fulfilled for particles in the states for which 

(k - k,) = 2kF; k,  k - 2kF . (3.9) 
Denoting u(k - 2kF) = v(k) and U(2kF) = A ,  U ( 0 )  = 2Jg  1/L, the system of equa- 
tions (3.4) will take the form 

(-8W + E + p)  u ( k )  + N k )  = 0 , 
du(k )  -t- ( -E(k  - 2kp) + 1.) v ( k )  = 0 3 (3.10) 

u y k )  + vyk)  = 1; p = E, - U(0)  + w. 
The one-particle excitation spectrum follows from (3.3) : 

and also the values d ( k )  and @(k)  as the function of wave number k 

(3.12) 

Thus, the dielectric gap of width 211 is formed in a one-particle excitation spec- 
trum. The sign “plus” in (3.11) corresponds to  the upper subband and “minus” to 
the lower one. Fig. 1 illustrates the energy structure of a one-particle spectrum in the 
superconducting state. Actually, such a picture of the spectrum is connected with 
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Fig. 1. Energy structure of the one-particle 
spectrum in the superconducting state 
(solid curves) and in normal state (dash- 
dotted line). CL = 10, A = 2 (in re]. units) 

hybridization of states with energies close to the Fermi level but being distinguished 
by 2k,. 
I -  

For energies close to the Fermi level Ig(k) - pj - A << EF there holds 

%(k) - EF % E F  - 8 ( k  - 2kF) . 
Taking the latter into account (3.11) and (3.12) take the form 

E ( k )  = f ( [ Q ( k )  - EFI2 + 4' + u(0) > (3.13) 

(3.14) 

The wave function of one-particle states Y( l )  will have the form for the lower band 
.- 

and for the upper one 
.- 

The lower band states are occupied, those of the upper band are empty. 
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4. The Dielectric Gap 

The dielectric gap value is determined by U ( k )  for k = 2k,. Using (2 .2 ) ,  (2 .3) ,  and 
(3.7), having calculated the relevant integrals, we get 

where K’(q) = K((1 - q 2 ) .  

the form 
At small bisoliton concentrations L -+ 03 (which corresponds to  q + 1) (4.1) takes 

Using the state density value N ( E )  in a one-dimensional system near the Fermi 
energy E = E,, 

n 1 

the expression for the gap A can be represented as 

A = 2kw sh-l{ - $}. (4.4) 

Here 
A = 2JgN(Ep)  = GN(EE) 9 

G = 2 J g ,  
4Zk,lXJ 

kto =- L -  

The parameter A has the same meaning as in the relations for the dielectric gap value 
in the BCS theory. It characterizes the dimensionless electron-phonon interaction 
constant. hcu depends on the bisoliton concentration and the following relation holds: 

(4.5) 

The latter arises from condition (3.9). 
Thus, hw corresponds to the interval of energy values a t  which Fermi particles 

participate in creating the superconducting condensate. If Y is constant, A as function 
of k,  as  shown in Fig. 2 ,  has its maximum value in the region k,  satisfying the condi- 

Fig. 2. Dependence of A on wave number 

nkF (= A-1 = z) 
B 

kF T / g  ___c 

22 physica (b) 156/1 
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tion 

akF = - 2g or A = 0 . 5 .  
76 

Matching the conditions (2.4) and (4.5) in the region of large bisoliton concentrations, 
we get the value v = 1 a t  which A is maximum. In  the one-dimensional case this 
is consistent with the bisoliton concentration k,ln which testifies the fact that all 
particles are involved in generating a superconducting condensate. In  the general 
case the parameter v-l determines the relative number of particles responsible for 
superconductivity. I ts  value is determined, under condition (3.8), by the deformation 
energy value W strongly dependent on t,he structure and mechanical properties of the 
superconductor. 

Under condition (4.5) for hcc, we have 
25 g2J 

Fzn,, = - __. 
n3 v 

The value hoim is the analogue of the Debye energy hw, in BCS theory. 

5. Conclusion 
Thus, analogous to the BCS theory, in a bisoliton theory the one-particle excitation 
spectrum is rearranged when going over to the superconducting state. The depend- 
ence of the dielectric constant on the parameter A is typical for the BCS theory, but 
the pre-exponential factor has a different value determined by (4.4) and (4.6). Com- 
paring coD and (0, we find from realizing the bisoliton superconductivity mechanism, 

The above condition can be realized a t  small values v. A specific value v follows from 
the possibility to realize deformation in a superconducting system. With C < Gcr 
the BClS superconductivity mechanism will produce higher values for the critical 
temperatures. Since hcu, is v dependent, with availability of microstructures typical 
for ceramic superconductors, the existence of d with different values v is possible. 

In  [5] microcontact spectroscopy of the superconductor La,,,Sr,,,,CuO, revealed 
two gaps having the values 24, = 13.3 meV and 24, = 26 meV. This, according to  
the above-presented model of superconductivity, corresponds to v = 1, v = 2, and 
d,/d, = 2. It is essential that in this case the current-voltage dependences prove to 
be typical for the excitation spectrum of type (3.13). 
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